Scheme & Syllabus for B.Tech. in Electrical Engineering according to Choice Based Credit System (CBCS)

(Semester-VIII to Semester-VIII)

Department of Electrical Engineering For Session 2021-22 onwards (Batch 2018-19 onwards)

School of Engineering & Technology

CENTRAL UNIVERSITY OF HARYANA MAHENDERGARH-123031 HARYANA

Central University of Haryana, Mahendergarh B.Tech. 4th YEAR (SEMESTER – VII)

Choice Based Credit System Scheme of Studies& Examinations w.e.f. 2021-22 (Batch 2018-19 onwards)

S.				Teaching Schedule			
No.	Course Code	Course Title	L	T	P	Credits	
1	BT EE701A	Electric Drives	3	0	0	3	
2	BT EE702A	Project Stage –I	0	0	6	3	
3	BT EE703A	Summer Internship Presentation	0	3	0	3	
4		Program Elective – 6	3	0	0	3	
5		Program Elective – 7	3	0	0	3	
6		General Elective or Open Elective-4	3	1	0	4	
Tota	Total			04	06	19	

L = Lecture, T = Tutorial, P = Practical, & C = Credits

NOTE: - Examinees will be allowed to use only non-programmable scientific calculators in the examination. Other electronic gadgets and sharing of materials will not be permitted during the examinations.

PROGRAM ELECTIVE-6 (PE6)

PROGRAM ELECTIVE-7 (PE7)

EE704A	Digital Control Systems		EE707A	Smart Grid
EE705A	Control System Design		EE708A	Electrical and Hybrid Vehicles
EE706A	Non-linear and optimal		EE709A	Power Quality and FACTs
	control theory	1	•	

Central University of Haryana, Mahendergarh B.Tech. 4th YEAR (SEMESTER – VIII)

Choice Based Credit System Scheme of Studies & Examinations w.e.f. 2021-22 (Batch 2018-19 onwards)

Group A

S.	Course			Teaching Schedule			
No.	Code	Course Title	L	Т	Р		
1	BT EE801A	Project Stage II	0	0	20	10	
2	BT EE802A	General Proficiency and Ethics	2	0	0	2	
3		Program Elective – 8	3	0	0	3	
4		General Elective or Open Elective-3	3	1	0	4	
Tota	Total			02	16	19	

L = Lecture, T = Tutorial, P = Practical, & C = Credits Group B

S.	Course	Course Title	Teach Sched	Credits		
IVO.	Code	Course ritte	L	Т	Р	
1	BT EE801A	Industry Internship	0	0	24	14
2	BT EE802A	General Proficiency and Ethics (online)	2	0	0	2
3		Program Elective – 8 (online)	3	0	0	3
Tota	Total			02	16	19

L = Lecture, T = Tutorial, P = Practical, & C = Credits

NOTE: - Examinees will be allowed to use only non-programmable scientific calculators in the examination. Other electronic gadgets and sharing of materials will not be permitted during the examinations.

PROGRAM ELECTIVE-8 (PE8)

EE803A	Special Electrical Machines
EE804A	Power Electronics and Control for Renewable Energy Systems
EE805A	Robust Control

Program Name: B. Tech.-Electrical Engineering

Course	Course Name: ELECTRIC	Course Name: ELECTRIC DRIVES				C
Code:			3	-	-	3
BT EE701						
Year and	4 th year	Contact hours p	er week: (3	Hrs	Ex	am:
Semester	7 th Semester	(3hrs.)				
Pre-requi	site Electrical Machine, Power	Ev	valuation			
of course	Electronics	CIE: 30	TE	E: 7	0	
Course O	utcomes: On completion of the coun	se, student would be	able to:			
CO701.1	Understand the principle of elec	trical drives & be	able to un	dersi	and	the
	dynamics of electrical drive systen	IS.				
CO701.2	Select a drive for a particular app	lication based on po	wer rating	& to	sele	ect a
	drive based on mechanical character	eristics for a particula	ar drive app	licati	on	
CO701.3	Operate state space model of DC	motor and apply dif	ferent power	r ele	ectro	nics
	converters for control of DC drives		_			
CO701.4	Learn speed control of induction m	otor drives in an ene	rgy efficien	t ma	nner	•
	using power electronics					
CO701.5	Familiarize with efficient use of el	ectric drive.				•
CO701.6	Identify suitable form of electrical	drives system				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Electrical Drives: Introduction, advantages, choice of electrical drives, status of ac and dc drives. Dynamics of Electrical Drives: Fundamental torque equations, multi-quadrant operation, equivalent values of drive parameters, load torque components, types of loads, steady state stability, load equalization. Control of Electrical Drives: Modes of operation, closed loop control of drives, sensing of current and speed.	12	CO701.1,
2	Selection of Motor & its power rating: Types of motors & their enclosures, thermal model of motor for heating & cooling, classes of motor duty, rate of motor. Energy Conversion in Electric Drive: losses in electrical drive system, energy conversion, use of efficient semiconductor converters, energy efficient operation of drives.	10	CO701.2 CO701.5
3	DC Motor Drives: Speed-torque characteristics of different types of dc motors, starting, types of braking, transient analysis, speed control methods, static control of dc motors. Converter fed dc drive & chopper fed dc drive.	10	CO701.3
4	Induction Motor Drives: Characteristics, analysis and performance, starting methods, braking methods, transient analysis, methods of speed control, vector control. Static control techniques- stator frequency control, stator voltage control, rotor resistance control. Static Scherbius system & static Kramer system.	13	CO701.4 CO701.6

Special Drives: Switched Reluctance motor, Brushless dc	
motor. Selection of motor for particular applications.	

- 1. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House.
- 2. S.K. Pillai, "A First Course on Electric Drives", New Age International.
- 3. V. Subrahmanyam, "Electric Drives", McGraw Hill Education

- 1. M. Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 2. A. Mohammed El-Sharkawi, "Fundamentals of Electric Drives", Thomson Asia, Pvt. Ltd. Singapore.
- 3. N.K. De and K.Sen Prashant, "Electric Drives", Prentice Hall of India Ltd.
- 4. V. Subrahmanyam, "Electric Drives: Concepts and Applications", Tata McGraw Hill.

Program Name: B. Tech.-Electrical Engineering

Course	Course Name: DIGITAL (Course Name: DIGITAL CONTROL SYSTEMS				C		
Code:			3	-	-	3		
BT EE704	A							
Year and	4 th year	Contact hours pe	er week: (3	Hrs)	Exa	am:		
Semester	7 th Semester	(3hrs.)						
Pre-requi	site Control System, Signals and	Ev	Evaluation					
of course	Systems	CIE: 30	CIE: 30 TEE: 70					
Course O	utcomes: On completion of the cou	rse, student would be	able to:					
CO704.1	Obtain discrete representation of I	TI systems.						
CO704.2	Analyse stability of open loop and	Analyse stability of open loop and closed loop discrete-time systems.						
CO704.3	Design and analyse digital control	Design and analyse digital controllers.						
CO704.4	Design digital compensator and di	Design digital compensator and discrete observer for LTI systems.						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Introduction: Terminology: continuous time, discrete-time & digital signals; Basic structure of digital control scheme and brief description of its blocks. Advantages & problems of digital control, General principles of signal conversion: operation by A/D & D/A converters, A/D and D/A converter circuits; Sample and hold circuit: Mathematical analysis of sampling process, Ideal sampler, Choice of sampling frequency, Aliasing; Sampling theorem, The Hold operation, ZOH. Unit sample sequence, Unit step sequence & Unit sinusoidal sequence. Difference Equation models & Impulse response models for discrete time systems. State space models of discrete systems, state space analysis, Controllability, reachability, reconstructibility and observability analysis.	10	CO704.1, CO704.2
2	Transform Domain Processing: Definition of Z-transform; The Z-transforms of typical functions such as Unit sample sequence, Unit step sequence, sampled ramp function, sampled exponential function, sampled sinusoids; Operations with Z transform such as shifting (forward & backward); Z transform Inversion; Final value & Initial value theorems; Transfer function models; Unit delayer Transfer function; Dynamic response; Stability in z-plane; Jury Stability test; Z-plane poles v/s stability (& the nature of response functions); Mapping s-plane to z-plane, Bilinear transformation.	10	CO704.2
3	Models Of Digital Control Devices & Systems: z-domain description of sampled continuous-time plants, model of ADC & DAC, Interconnection of discrete-time & continuous time systems & their equivalent transfer functions; Implementation of digital controllers, Recursive realizations: direct, cascade & parallel realizations, non-recursive realization; Digital PID controller: Positional & velocity forms; Tuning rules for digital PID. Design of digital control system with dead beat response. Practical issues with dead beat response design.	10	CO704.3

4	Design of Digital Control Algorithms: Basic structure of digital control system; Routes to the design of digital Controller, z-plane specifications of control system design: steady state accuracy, Steady state errors & error constants for type-0,-1,-2 systems, Transient accuracy, dominant poles, Effect of extra zero & pole on discrete time 2nd order system; Digital compensator design using frequency response plot; Digital compensator design using root locus plot. Design of discrete observer for LTI System. Design of set point tracker.	10	CO704.4
---	--	----	---------

- 1. M. Gopal, "Digital Control Engg.", New Age International Publishers, New Delhi.
- 2. M. Gopal, "Digital Control & State Variable Methods (Conventional and Intelligent Control System)", Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 3. G.F. Franklin, J.D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley, 1998.

- 1. B.C. Kuo, "Digital Control Systems", Oxford University Press.
- 2. K. Ogata, "Discrete-time Control Systems", Pearson Education, New Jersey.
- 3. C.L. Phillips, & Jr. H.T. Nagle, "Digital Control System Analysis", Pearson Education, New Jersey.
- 4. C.H. Hopis and G.B. Lemont, "Digital Control System: Theory, Hardware & Software", McGraw-Hill Publications, New York.

Program Name: B. Tech-Electrical Engineering

Course Cod BTEE705A	e: Cours	Course Name: CONTROL SYSTEM DESIGN			L	T 0	P	<u>C</u>		
DILL! (UII	DIDE/VOIL									
Year and	4 th Yea	ar		Contact hou	rs per w	eek:	(3 H	rs.)		
Semester	7 th Sen	n		Exam: (3hrs	.)					
Pre-requisit	e Contro	ol System		Evaluation						
of course	Contro	Control Bystem		CIE: 30	T	TEE: 70				
Course Out	comes: On	completion of the co	urse, stude	ent would be al	ble to:					
CO705.1	Understan	d the different design	specifica	tions of Contro	ol Systen	1.				
CO705.2	Design of	Control System in tir	ne and fre	equency domai	n.					
CO705.3	Design of	PID controllers in tim	e and fre	quency domai	n.					
CO705.4	Understan	nderstand the state space representation of Control system.								
CO705.5	Understan	d the concept of cont	rollability	& observabili	ty.					
CO705.6	Design of	Control system in sta	ite space r	epresentation.						

Module	COURSE SYLLABUS	Hrs.	Cos
1	CONTENTS OF MODULE Design Specifications: Introduction to time-domain and frequency-domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response	10	CO705.1,
2	Design of Control System in Time-Domain: Introduction to compensator design in time-domain. Design of Lag, lead and lag-lead compensator in time-domain. Feedback and Feed forward compensator design. Feedback compensation. Realization of compensators. Design of Control System in Frequency-Domain: Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using bode-plot.	15	CO705.2
3	Design of PID Controllers: Design of P, PI, PD and PID controllers in time-domain and frequency-domain for first, second and third order systems. Control loop with auxiliary feedback and Feed forward control.	9	CO705.3
4	Control System Design in State Space: Review of state space representation. Concept of controllability & observability, effect of pole-zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Reduced order observer. Separation Principle.	11	CO705.4, CO705.5 CO705.6

Text Books:

- 1. N. Nise, "Control System Engineering", John Wiley, 2000.
- 2. I.J. Nagrath and M. Gopal, "Control System Engineering", New Age International, 2018.
- 3. B.C. Kuo, "Automatic Control system", Prentice Hall, 1995.

- 1. J.J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill, 1995.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.
- 3. R.T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", Saunders College Pub, 1994.

Program Name: B. Tech-Electrical Engineering

Course Code: BTEE706A		Course Name: A NON-LINEAR AND OPTIMAL CONTROL SYSTEM		L 3	T 0	P -	C 3	
Year and Semester		4 th Year 7 th Sem	Contact hour Exam: (3hrs.	-	wee	ek: (3 Hı	rs.)
Pre-requisit	te of	Control System	Evaluation		tion			
course		Control System	CIE: 30		TEE: 70			
Course Out	comes	: On completion of the course, stud	dent would be a	ble to	:			
CO706.1	Dem	onstrate non-linear system behavio	ur by phase pla	ne and	d de	scrib	ing	
	func	tion methods.						
CO706.2	Perfo	orm the stability analysis nonlinear	systems by Lya	punov	v me	etho	d	
	deve	lop design skills in optimal control	problems					
CO706.3	Design and apply state-of-the-art classical and modern computational							
	meth	nethods to define and solve optimisation problems.						
CO706.4	Unde	erstanding of feedback optimal con-	trol system					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs.	Cos
1	Linear versus nonlinear systems- Describing function analysis: Fundamentals, common nonlinearities (saturation, dead - zone, on - off non - linearity, backlash, hysteresis) and their describing functions. Describing function analysis of nonlinear systems. Reliability of describing method analysis. Compensation and design of nonlinear system using describing function method. Phase plane analysis: Phase portraits, Singular points characterization. Analysis of non - linear systems using phase plane technique. Existence of limit cycles. Linearization: Exact linearization, input - state linearization, input - output linearization.	10	CO706.1,
2	Concept of stability, Zero - input and BIBO stability, stability in the sense of Lyapunov and absolute stability, Stability in the small and stability in the large, Lyapunov stability definitions, first method of Lyapunov, second (or direct) method of Lyapunov stability theory for continuous and discrete time systems, Aids to generate Lyapunov function – Krasovskii's theorem, Variable gradient method.	15	CO706.2
3	Aizerman's and Kalman's conjecture. Construction of Lyapunov function - Methods of Aizerman, Zubov, Variable gradient method. Lure problem. Popov's stability criterion, Formulation of the optimal control Problem, Calculus of variations, Minimum principle, Dynamic Programming, Numerical Solution of Two-point Boundary value problem.	9	CO706.3
4	Optimal Feedback Control: Discrete-Time linear State regulator, Continuous-Time Linear state Regulator results of solve other linear problems, Suboptimal Linear regulators, Minimum-time Control of Linear Time-Invariant System. Stochastic Optimal Linear Estimation and Control Stochastic	11	CO706.4,

processes and linear systems, Optimal Estimation for Linear	
Discrete time Systems Stochastic Optimal Linear Regulator.	

- 1. M. Gopal, "Modern Control System Theory", New Age International, 2005.
- 2. K. Ogatta, "Modern Control Engineering", PHI, 2002.
- 3. B.C. Kuo, "Digital Control Systems", Oxford University Press, 1980.

- 1. Anderson, D.O. Brian and John B. Moore, "Optimal Control: Linear Quadratic Methods", Courier Corporation, 2007.
- 2. J. Speyer and D. Jacobson, "Primer on Optimal Control Theory", SIAM, 2010
- 3. R. Stengel, "Optimal Control and Estimation, Dover", 1994
- 4. K. Astrom, "Introduction to Stochastic Control Theory", Dover, 2006
- 5. B. Anderson and J. Moore, "Optimal Control", Dover, 2007
- 6. A. Bryson and Y. Ho, "Applied Optimal Control", Taylor & Francis, 1975
- 7. A. Bryson, "Applied Linear Optimal Control", Cambridge University Press, 2002
- 8. M. Athans and P. Falb, "Optimal Control", Dover, 2006
- 9. D. Naidu, "Optimal Control Systems", CRC Press, 2002
- 10. F. Lewis and V. Syrmos, "Optimal Control", Wiley-Interscience, 1995
- 11. P. Dorato, C. Abdallah, and V. Cerone, "Linear Quadratic Control", Krieger Publishing, 2000

Program Name: B. Tech.-Electrical Engineering

1 Togram Name. B. TeenElectrical Engineering								
Course Code:		Course Name: SMART GF	RID		\mathbf{L}	T	P	C
BT EE707	BT EE707A			•	3	0	-	3
Year and		4 st year	Contact hours pe	r week:	(4]	Hrs)	Exa	am:
Semester		7 th Semester	(3hrs.)					
Pre-requi	site	Power System Analysis	E	valuation	n			
of course			CIE: 30	: 30 TEE: 70				
Course O	utcom	es: On completion of the cour	se, student would b	e able to:	:			
CO707.1	To U	Inderstand basic concept of sma	art grid and its need	, opportu	niti	es a	nd b	arrier
	and c	communication in smart grid.						
CO707.2	Expl	ain the advanced metering infra	astructure, commun	ication is	nfra	astru	ıctuı	re and
	proto	ocol and demand side integration	on for smart meterin	ıg.				
CO707.3	Unde	erstand the concept of micro gr	id its need, operation	n, applic	catio	on, j	prote	ection
	and c	control, islanding mode and sn	nall scale different t	ype of d	istri	ibut	ed e	nergy
	resou	sources.						
CO707.4	Anal	yze power quality issues and	control operation o	f micro	grid	l an	d IC	T for
	smar	t grid						

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid, CDM opportunities in Smart Grid, What is a Smart Grid?, The Smart Grid Enables the Electri Net SM, Local Energy Networks, Electric Transportation, Low-Carbon Central Generation, What Should Be the Attributes of the Smart Grid?, Why Do We Need a Smart Grid?, Is the Smart Grid a "Green Grid"?,	10	CO707.1,
2	Sensing, Measurement, Control and Automation Technologies: Smart metering and demand-side integration, Introduction, Smart metering, Evolution of electricity metering, Key components of smart metering, Smart meters: An overview of the hardware used Signal acquisition, Signal conditioning, Analogue to digital conversion, Computation, Input/output, Communication, Communications infrastructure and protocols for smart metering, Home-area network, Neighbourhood area network, Data concentrator, Meter data management system, Protocols for communications, Demand-side integration, Services provided by DSI, Implementations of DSI, Hardware support to DSI implementations, Flexibility delivered by prosumers from the demand side, System support from DSI.	10	CO707.2,
3	Micro Grids and Distributed Energy Resources: Concept of micro grid, need & applications of micro grid, formation of micro grid, issues of interconnection, protection & control of		CO707.3,

	micro grid. Islanding, need and benefits, different methods of islanding detection. Distributed Energy Resources: Small scale distributed generation, Distributed Generation Technology, Internal Combustion Engines, Gas Turbines, Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as a DG. Advantages and disadvantages of DG.		
4	Power Quality Management in Smart Grid: Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit. Information and Communication Technology for Smart Grid: Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighbourhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Broadband over Power line (BPL)	10	CO707.4,

- 1. A. Keyhani, "Design of Smart power grid renewable energy systems", Wiley IEEE, 2011.
- 1. W.G. Clark, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press, 2009.
- 2. S. Borlase, "Smart Grid: Infrastructure, Technology and solutions "CRC Press.
- 3. J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, A. Yokoyama, "Smart Grid: Technology and Applications", Wiley.
- 4. A. Carvallo, J. Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability: 1", Artech House Publishers July 2011
- 5. M. Kezunovic, G. A. Mark, P. A. Alexander, J. G. Gilbert, "Substation Automation (Power Electronics and Power Systems)", Springer

- 1. J.N. Green, R.G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 2. R.C. Dugan, M.F. McGranghan, S. Santoso, H.W. Beaty, "Electrical Power System Quality", 2nd Edition, McGraw Hill Publication.
- 3. A.G. Phadke, J.S. Thorp, "Synchronized Phasor Measurements and Their Applications", Springer.
- 4. J. Momoh, "Smart Grid: Fundamentals of Design and Analysis", Wiley.

Program Name: B.Tech.-Electrical Engineering

Course Co	de: Co	urse Name: EI		AL AND HYBR		L	T	P	С
BT EE708	\ VE	HICLES				3	-	-	3
Year and	4 st	year		Contact hours	per weel	«: (4	Hrs) Ex	am:
Semester	7 th	Semester		(3hrs.)					
Pre-requisi	te Ele	ctrical Vehicles			Evaluati	on			
of course				CIE: 30		TE	E: 7	70	
Course Ou	tcomes: (On completion of	of the cours	se, student would	be able t	to:			
CO708.1	Underst	and objective ar	nd scope of	f Electric vehicle	and its re	ecent	t trei	nds	
CO708.2	Explain	the basics o	of convent	ional vehicle, t	heir sco	pe,	per	form	nance,
	characte	eristic and its ma	athematical	l model.					
CO708.3	Analyse	social and env	vironment	impact of EHV	and var	ious	tope	olog	ies of
	electric	drives suitable f	for hybrid (electric vehicles.					
CO708.4	Explain	the basics and	d different	topologies of E	Electric o	lrive	trai	in a	nd its
	configu	ration and anal	yse and co	ontrol of advance	ed propu	lsior	ı tec	hniq	ue in
	EHV.								
CO708.5	Underst	and the use of	different e	energy storage te	chnologi	es us	sed 1	for h	ybrid
		electric vehicles and their sizing and control.							
CO708.6	Interpre	t working of dif	ferent class	sification of energ	y manag	eme	nt sy	sten	ı used
	in Elect	ric hybrid vehic	le and its in	mplementation ar	nd case st	udy.			

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Introduction: Objective, scope and outcome of the course.	1	CO708.1
2	Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, Transmission characteristics, and mathematical model to describe vehicle performance.	5	CO708.2
3	Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive- trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	7	CO708.3
4	Electric Trains: Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.	10	CO708.4
5	Energy Storage: Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery	10	CO708.5

	based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.		
6	Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	8	CO708.6

- 1. I. Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003
- 2. M. Ehsani, Y. Gao, S. E. Gay, A. Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004
- 3. S. Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000

- 1. J. Larminie, J. Lowry, "Electric Vehicle Technology Explained", Wiley, 2003
- 2. C. Mi, M.A. Masrur, D.W. Gao, "Hybrid Electric Vehicles: Principle and Applications with Practical Perspectives", John Wiley & Sons Ltd., 2011.

Program Name: B.Tech.-Electrical Engineering

Course		Course Name: POWER QUALITY AND FACTS			L	T	P	C
Code:					3	-	-	3
BT EE709	A							
Year and		4 th year	Contact hours	per w	eek:	(4 I	Hrs)	
Semester		7 th Semester	Exam: (3hrs.)					
Pre-requi	site	Power Quality and FACTS	Evaluation					
of course		Tower Quanty and FAC15	CIE: 30		TEE: 70			
Course O	utcor	nes: On completion of the course, s	tudent would be	able to):			
CO709.1	Und	lerstand objective and scope of pow	er quality and Fa	cts.				
CO709.2	Exp	lain the basics of reactive and activ	e power in transn	nission				
CO709.3	Exp	lain the basics and different topolog	gies of SVC, TCS	SC.				
CO709.4	Und	lerstand the use of different vol	tage source con	verter	bas	ed (FAC	CTS)
	controllers							
CO709.5	Und	nderstand the use of different application of FACTS devices.						
CO709.6	Exp	lain the power quality problems in	distribution syste	ms				

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	Cos
1	Introduction: Objective, scope and outcome of the course.	1	CO709.1
2	Transmission Lines and Series/Shunt Reactive Power Compensation: Basics of AC Transmission. Analysis of uncompensated AC transmission lines. Passive Reactive Power Compensation. Shunt and series compensation at the mid-point of an AC line. Comparison of Series and Shunt Compensation	5	CO709.2
3	Thyristor-based Flexible AC Transmission Controllers (FACTS): Description and Characteristics of Thyristor-based FACTS devices: Static VAR Compensator (SVC), Thyristor Controlled Series Capacitor (TCSC), Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. Configurations/Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter.	7	CO709.3
4	Voltage Source Converter based (FACTS) Controllers: Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Har- monic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Inter phase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.	10	CO709.4
5	Application of FACTS: Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single- machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	10	CO709.5

6	Power Quality Problems in Distribution Systems: Power quality problems in distribution systems: transient and steady state variations in voltage and frequency. unbalance, sags, swells, interruptions, waveform distortions: harmonics, noise, notching, dc-offsets, fluctuations. flicker and its measurement. tolerance of equipment: cbema curve.	8	CO709.6
---	--	---	---------

1. Text books:

- 2. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technol- ogy of FACTS Systems", Wiley-IEEE Press, 1999.
- 3. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.
- 4. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.
- 5. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.

Program Name: B.Tech.-Electrical Engineering

Course Code: BT EE803A		Course Name: SPECIAL ELECTRICAL MACHINES		L T P C 3 - 3				
Year and Semester		4 th year 8 th Semester	Contact hours per week: (4 Hrs) Exam: (3hrs.)					
Pre-requisite		Power Quality and FACTS	Evaluation					
of course		Tower Quanty and The 15	CIE: 30	TEE: 70				
Course O	Course Outcomes: On completion of the course, student would be able to:							
CO803.1	Use different types of motor efficiently for various applications							
CO803.2	Maintain different types induction machines for different applications							
CO803.3	Maintain different types synchronous machines for different applications							
CO803.4	Maintain different types of Permanent magnet motors							
CO803.5	Maintain various types of Small specialised electric machines							

Module	COURSE SYLLABUS	Hrs	COs
No	CONTENTS OF MODULE		
1	Stepping Motors: Constructional features, principle of operation, types, modes of excitation, torque production in Variable Reluctance (VR) stepping motor, static and dynamic characteristics, introduction to drive circuits for stepper motor, suppressor circuits, closed loop control of stepper motorapplications	1	CO803.1 CO803.2
2	Switched Reluctance Motors: Principle of operation, constructional features, torque equation, power semiconductor switching circuits, frequency of variation of inductance of each phase winding - control circuits of srm-torque - speed characteristics, microprocessor based control of srm drive, applications.	5	CO803.1 CO803.2
3	Synchronous Reluctance Motors Constructional Features: Axial and radial air gap motors. operating principle, reluctance torque - phasor diagram, speed torque characteristics, applications.	7	CO803.2 CO803.3
4	Permanent Magnet Brushless Dc Motors: commutation in dc motors, electronic commutation - difference between mechanical and electronic commutators- hall sensors, optical sensors, construction and principle of pmbl dc motor, torque and e.m.f equation, torque-speed characteristics, power controllers-drive circuits, applications	10	CO803.1 CO803.4
5	Permanent Magnet Synchronous Motors: Construction and types, principle of operation, emf and torque equation, phasor diagram, torque speed characteristics, power controllers- self-control, vector control, microprocessor based control, applications	10	CO803.4 CO803.5

Text Books:

- 1. T. J. E. Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.
- 2. T. Kenjo and A. Sugawara, "Stepping Motors and their Microprocessor Controls", Oxford Science Publications, 1984.

3. K. Venkataratnam, "Special Electrical Machines", CRC Press, 2009.

- 1. R. Krishnan, "Permanent Magnet and BLDC Motor Drives", CRC Press, 2009.
- 2. X. Chang-liang, "Permanent Magnet Brushless DC Motor Drives and Controls", June 2012

Program Name: B.Tech.-Electrical Engineering

Course Code:		Course Name: POWER ELECTRONICS AND			T	P	C		
BT EE804 A		CONTROL FOR RENEWABLE ENERGY SYSTEMS			-	-	3		
Year and		4 th year	Contact hours per week: (3 Hrs)						
Semester		8 th Semester	Exam: (3hrs.)						
Pre-requisite		Power Electronics, Control Systems	Evaluation						
of course		•	CIE: 30	TEE: 70			0		
Course Outcomes: On completion of the course, student would be able to:									
CO804.1	Analyze power electronics converters controls								
CO804.2	Apply power electronics converters in renewable energy systems								
CO804.3	Design advance power electronics converters control schemes								

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Fundamentals of Power Converters: DC/DC converters, AC/DC converters, DC/AC converters, Classical Multilevel Inverters, SPWM, SVPWM.	10	CO804.1, CO804.2
2	Modelling of Power Converters: Introduction to Power Electronic Converters Modelling, Switched Model, Classical Averaged Model, Generalized Averaged Model, Small Signal Analysis	10	CO804.2
3	Control of Power Converters: General Control Principles of Power Electronic Converters, Linear Control Approaches for DC-DC Power Converters, Linear Control Approaches for DC-AC and AC-DC Power Converters, Energy-Based Control of Power Electronic Converters, Variable-Structure Control of Power Electronic Converters.	10	CO804.2, CO804.3
4	Control of Renewable Energy Systems: Control of voltage source converters with LCL filters, Control of three-phase converters including Phase Locked Loop, Control of PV systems, Control of Wind Energy Systems.	10	CO804.3

Text Books:

- 1. A. I. Bratcu, I. Munteanu, and S. Bacha, "Power Electronic Converters Modelling and Control", Springer Press, 2013.
- 2. F. Blaabjerg, "Control of Power Electronic Converters and Systems", Academic Press, 2018.

Reference Books:

1. F.A. Farret, M.G. Simões, "Modelling Power Electronics and Interfacing Energy Conversion Systems", John Wiley & Sons, 2017.

Program Name: B. Tech.-Electrical Engineering

Course Code:		Course Name: ROBUST CONTROL		L	T	P	C	
BT EE805	A			3	•	-	3	
Year and		4 th year	Contact hours per week: (3 Hrs)					
Semester		8 th Semester	Exam: (3hrs.)					
Pre-requisite of		Control System	Evaluation					
course			CIE: 30 TEE: 70)		
Course Ou	Course Outcomes: On completion of the course, student would be able to:							
CO805.1	Unde	nderstand LTI systems and its applications						
CO805.2	Apply	Apply Lyapunov theorem for any stability problem						
CO805.3	Desig	n passive systems in frequency and	and time domain					

Module No	COURSE SYLLABUS CONTENTS OF MODULE	Hrs	COs
1	Modelling of Uncertain Systems, Signals and Norms, Lyapunov theory for LTI systems.	10	CO805.1, CO805.2
2	Passive Systems – Frequency Domain Passive Systems – Time Domain	7	CO805.2
3	Robust Stability and Performance, Stabilizing Controllers – Coprime Factorization	8	CO805.2, CO805.3
4	LQR, LQG problems, Ricatti equations and solutions, Ricatti equation solution through LMI, H-infinity control and musynthesis, Linear matrix inequalities for robust control	10	CO805.3

Text Books:

- 1. L. Fortuna, M. Frasca (Eds.), "Optimal and Robust Control", CRC Press, 2012
- 2. K. Zhou, J.C. Doyle and K. Glover, "Robust and Optimal Control", Prentice Hall, 1996 **Reference Books:**
 - 1. J.C. Doyle, B.A. Francis and A.R. Tannenbaum, "Feedback Control Theory", Macmillan, 1992